首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40076篇
  免费   2766篇
  国内免费   2379篇
  2023年   630篇
  2022年   721篇
  2021年   1259篇
  2020年   1202篇
  2019年   1693篇
  2018年   1462篇
  2017年   966篇
  2016年   1028篇
  2015年   1325篇
  2014年   2410篇
  2013年   2895篇
  2012年   1799篇
  2011年   2425篇
  2010年   1732篇
  2009年   1971篇
  2008年   2016篇
  2007年   2183篇
  2006年   1883篇
  2005年   1685篇
  2004年   1487篇
  2003年   1234篇
  2002年   1150篇
  2001年   770篇
  2000年   641篇
  1999年   593篇
  1998年   617篇
  1997年   456篇
  1996年   472篇
  1995年   511篇
  1994年   427篇
  1993年   383篇
  1992年   388篇
  1991年   322篇
  1990年   286篇
  1989年   241篇
  1988年   235篇
  1987年   216篇
  1986年   175篇
  1985年   318篇
  1984年   451篇
  1983年   357篇
  1982年   403篇
  1981年   272篇
  1980年   272篇
  1979年   272篇
  1978年   219篇
  1977年   161篇
  1976年   137篇
  1975年   121篇
  1974年   125篇
排序方式: 共有10000条查询结果,搜索用时 216 毫秒
41.
42.
CG methylation is an epigenetically inherited chemical modification of DNA found in plants and animals. In mammals it is essential for accurate regulation of gene expression and normal development. Mammalian genomes are depleted for the CG dinucleotide, a result of the chemical deamination of methyl-cytosine in CG resulting in TpG. Most CG dinucleotides are methylated, but ~ 15% are unmethylated. Five percent of CGs cluster into ~ 20,000 regions termed CG islands (CGI) which are generally unmethylated. About half of CGIs are associated with housekeeping genes. In contrast, the gene body, repeats and transposable elements in which CGs are generally methylated. Unraveling the epigenetic machinery operating in normal cells is important for understanding the epigenetic aberrations that are involved in human diseases including cancer. With the advent of high-throughput sequencing technologies, it is possible to identify the CG methylation status of all 30 million unique CGs in the human genome, and monitor differences in distinct cell types during differentiation and development. Here we summarize the present understanding of DNA methylation in normal cells and discuss recent observations that CG methylation can have an effect on tissue specific gene expression. We also discuss how aberrant CG methylation can lead to cancer. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   
43.
44.
Sepsis in human beings is a major problem involving many individuals and with a high death rate. Except for a single drug (recombinant activated protein C) that has been approved for treatment of septic patients, supportive measures represent the main clinical approach. There are many models of experimental sepsis, mostly in rodents. A commonly used model is cecal ligation and puncture (CLP). In this model, robust activation of complement occurs together with up-regulation of C5a receptors (C5aR, C5L2) in a variety of different organs (lungs, kidneys, liver, heart). In septic human beings there is abundant evidence for complement activation. Interception of C5a or its receptors in the CLP model greatly improves survival in septic rodents. There is compelling evidence that CLP causes an intense pro-inflammatory state and that C5a interaction with its receptors can be linked to apoptosis of the lymphoid system and cells of the adrenal medulla, loss of innate immune functions of blood neutrophils, consumptive coagulopathy and cardiac dysfunction. These findings may have implications for therapeutic interventions in human beings with sepsis.  相似文献   
45.
Regulation of bacterial stress responding σS is a sophisticated process and mediated by multiple interacting partners. Controlled proteolysis of σS is regulated by RssB which maintains minimal level of σS during exponential growth but then elevates σS level while facing stresses. Bacteria developed different strategies to regulate activity of RssB, including phosphorylation of itself and production of anti-adaptors. However, the function of phosphorylation is controversial and the mechanism of anti-adaptors preventing RssB-σS interaction remains elusive. Here, we demonstrated the impact of phosphorylation on the activity of RssB and built the RssB-σS complex model. Importantly, we showed that the phosphorylation site - D58 is at the interface of RssB-σS complex. Hence, mutation or phosphorylation of D58 would weaken the interaction of RssB with σS. We found that the anti-adaptor protein IraD has higher affinity than σS to RssB and its binding interface on RssB overlaps with that for σS. And IraD-RssB complex is preferred over RssB-σS in solution, regardless of the phosphorylation state of RssB. Our study suggests that RssB possesses a two-tier mechanism for regulating σS. First, phosphorylation of RssB provides a moderate and reversible tempering of its activity, followed by a specific and robust inhibition via the anti-adaptor interaction.  相似文献   
46.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
47.
48.
49.
50.
The Smc5/6 complex facilitates chromosome replication and DNA break repair. Within this complex, a subcomplex composed of Nse1, Nse3 and Nse4 is thought to play multiple roles through DNA binding and regulating ATP-dependent activities of the complex. However, how the Nse1-Nse3-Nse4 subcomplex carries out these multiple functions remain unclear. To address this question, we determine the crystal structure of the Xenopus laevis Nse1-Nse3-Nse4 subcomplex at 1.7 Å resolution and examine how it interacts with DNA. Our structural analyses show that the Nse1-Nse3 dimer adopts a closed conformation and forms three interfaces with a segment of Nse4, forcing it into a Z-shaped conformation. The Nse1-Nse3-Nse4 structure provides an explanation for how the lung disease immunodeficiency and chromosome breakage syndrome-causing mutations could dislodge Nse4 from Nse1-Nse3. Our DNA binding and mutational analyses reveal that the N-terminal and the middle region of Nse4 contribute to DNA interaction and cell viability. Integrating our data with previous crosslink mass spectrometry data, we propose potential roles of the Nse1-Nse3-Nse4 complex in binding DNA within the Smc5/6 complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号